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Solving rate equations for electron tunneling via discrete quantum states
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We consider the form of the current-voltage curves generated when tunneling spectroscopy is used to
measure the energies of individual electronic energy levels in nanometer-scale systems. We point out that the
voltage positions of the tunneling resonances can undergo temperature-dependent shifts, leading to errors in
spectroscopic measurements that are proportional to the temperature. We do this by solving the set of rate
equations that can be used to describe electron tunneling via discrete quantum states, for a number of cases
important for comparison to experiments, includifiy when just one spin-degenerate level is accessible for
transport(2) when two spin-degenerate levels are accessible, with no variation in electron-electron interactions
between eigenstates, af®) when two spin-degenerate levels are accessible, but with variations in electron-
electron interactions. We also comment on the general case with an arbitrary number of accessible levels. In
each case we analyze the voltage positions, amplitudes, and widths of the current steps due to the quantum
states.
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[. INTRODUCTION electron-electron interactions can lead to additional shifts
and broadening of the tunneling resonances. The computer
Nanometer-scale single-electron tunneling transistors cagode that we use for calculating the tunneling current in the
now be fabricated in which electron flow occurs through ageneral case with an arbitrary number of accessible quantum
discrete spectrum of well-resolved quantum states. This hagfates is avallable electronically in ba@iATHEMATICA andc
been achieved in devices incorporating semlconductlnéormats
quantum dots, metal nanoparticles, and molectiigsn a This paper is organized as follows: In Sec. Il we review
transistor geometry, the source-drain voltagand the gate the general procedure for calculating tunneling currents in
voltageV,, can be adjusted to achieve the simplest case thdfe rate-equation approach. We discuss the physical assump-
electron flow occurs just through a single quantum state. A§ons under which this approach is accurate, and we explain
V and V, are changed, additional excited electronic state®ur notation. In Sec. Ill, we solve the simplest nontrivial
may also become energetically accessible for tunneling, precase, in which current flow occurs by means of tunneling via
viding alternative channels for the current flow. In this re-@ single spin-degenerate quantum level. In Sec. IV we then
gime, the tunneling processes can become quite complicateéitend this discussion to the case of tunneling via two or
due to the many combinations of nonequilibrium states thafnore spin-degenerate levels, and we describe several experi-
may be excited during tunneling, and the possibility of relax-mentally relevant consequences of the rate-equation model
ation between these states. for an arbitrary number of accessible states. In Sec. V, we
As long as the tunnel-barrier resistances are much great@Dr\Sider effects of fluctuations in electron-electron interac-
than h/e? and internal relaxation is negligible, the currentstions that can occur when current flow generates nonequilib-
traveling via any number of energetically accessible state§Um electronic states, and we explain how these effects can
can be analyzed in a sequential-tunneling picture using &roduce additional shifts and can also broaden the measured
rate-equation approach. The general procedure for complefunneling resonances.
ing this type of analysis has been outlined previously, for
example_in Refs. 4_—6. Our purpose in this_ paper is to present II. RATE-EQUATION CALCULATIONS
the solutions qf this moc_jel for selected S|mplg cases impor- OF CURRENT ELOW
tant for analyzing experiments on nonmagnetic islands, and
we describe several previously unappreciated consequencesWe are interested in calculating the tunneling current via a
of the model that explain recent observations. Whenevenonmagnetic single-electron transistor in the regime where
more than a singlénon-spin-degenerateguantum state is the discrete quantum states in the transistor island are well
accessible for tunneling, we show that the voltage positionsesolved. The circuit under consideration is shown in Fig. 1,
of the tunneling resonances can become temperature depemhich illustrates the definitions of the bias voltagend the
dent (shifting proportional toT). For the important case of gate voltageV,. We will limit our discussion to the condi-
tunneling via one spin-degenerate quantum state, we deri@ns under which the energy levels are best resolved:
the full form of the tunneling current as a function\6f v, kgT is smaller than the level spacin@p) the level spacing is
and T. This provides simple exact solutions for the voltagemuch smaller than the Coulomb-charging energy of the tran-
shift, resonance width, and current amplitude, thereby imsistor islande?/(2Cs), whereCy is the total capacitance of
proving upon an approximate approach used previouslthe island,(c) the tunnel barriers have resistanceh/e? so
When multiple spin-degenerate states participate in tunnethat cotunneling processes may be neglected and the tunnel-
ing, effects of nonequilibrium excitations and variations ining current is accurately described by lowest-order perturba-
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between the transistor island and the leads. We can select our
zero of energy(or, equivalently, the reference electrostatic
g potentia) for convenience, and we will do so in a way that
makes the energy of the eigenstates on the island indepen-
¥ dent of V andV,. The consequence is that the Fermi ener-
v/2 V2 gies in the leads will shift with/ andV. To be specific, we
choose the reference electrostatic potential such that
2Crd=0, whereC, and ¢, are the capacitance of the
island to thekth lead and the electric potential of thkeh
lead, and the sum extends over the three leads. Using this
reference, the charg@ in the island is related to its potential
¢ by Q=Cs ¢. In calculating the energy required for a tun-
neling transition, we must consider the work done. The tun-
rqeling of charge$Q, and 6Q, from the island to the left and
right leads requires a work

G ¢ @ G transport are energy differences as electrons make transitions
] ]
C

FIG. 1. Circuit schematic defining the bias voltage the gate
voltageV,, and the capacitanc€, C,, andC,. ¢ andQ are the
potential and the total charge of the island.

tion theory, and(d) kgT is larger than the intrinsic lifetime
broadening of the quantum states. In parts of the discussio
in order to simplify the notation, we will also assume that
electron interactions are sufficiently weak that many-body i _

eigenstatese) are well approximated as single Slater deter- OW=(dr=$)oQit (= $)5Qs 23
minants specified by the occupation of a set of single- 1

electron states: |a)={n;}. We neglect many-body effects =$,0Q,+ ¢, 6Q,+ — Q45Q (2b)
associated with Fermi-edge singularities in electrodes with Cs

low-electron densiti€sand effects of coupling to phonons or )

local degrees of freedom, which can produce additional fea- = 5 0+ $,Q, + Q_ (20
tures in tunneling characteristi¢s!® Under these approxi- P 2C s )

mations, the temperature enters our calculation only through . .
the Fermi functio?]s in the electrodes. Y gwhere Qy is the total charge that has tunneled into ldad

Our primary goals are to study the effects on current flowkNOte 8Q=—(5Q, +76Q,).]..From Eq.(2) it follows that the
of nonequilibrium electronic excitations and electron- €l€ctrostatic enerdy of the island is
electron interactions. Nonequilibrium excitations can be sup- 2
pressed when excited electronic states return back to the E C:Q_ 3
ground state at a rate that is fast compared to the electron 2Cy
tnneling rate. However, measurements on metal Nanopaky, ihe effective Fermi energies of the leads can be written
ticles indicate that the relaxation rate is generally comparable = _r . . oo
to or slower than the tunneling rate in realistic samptes. as Ex=edx, Wh.efee is the electron charge, including its
Therefore, we will generally neglect internal relaxation ef-SI9N- To be explicit,
fects entirely, limiting ourselves to noting the ways in which °C. 4+ C C
internal relaxation will produce qualitative changes to the Ef=+egv_e_gv , (43)
results. 2Cy Cy 9

2C/+Cq. C4
e —v-e=tv,. (4)

A. Energy of the eigenstates EF=—
' 2Cs Cs

In general, the quantum-mechanical electronic states
within the transistor island can be complicated correlated gjnce the charge of the island varies only by multiples of
many-electron eigenstates. The energy of any state can kee can write it aQ= Q.+ Ne, whereQ, is a background
written as a sum of three terms charge andN the number of electrons in the island. The

electrostatic energy is then
E= ECJF EK + EJ y

the terms being, respectively, the electrostatic or “Coulomb” ECZL(QOJr Ne)2. (5)
energy, the kinetic energy, and the fluctuations in the 2Cy

electron-electron interactions. Notice that the mean-fiel
contribution of the electron-electron interactions is the sal
as the electrostatic enerdy. Therefore E; accounts only
for the level-to-level fluctuations in these interactions.

d1'his is minimized wherN is the integer closest te- Qq/e.
M&hroughout this paper, we will assume that the Coulomb
energy is much larger than the level spacing so that only the
two lowest energy values foN, namely, Ny and N; =N,
+1, are permitted during the process of current flow. This
assumption allows us to take the electrostatic energy to be
The electrostatic energy will in general depend on theproportional toN: since[ N— (Ny+ N;)/2]?>= 3 is a constant,
charge of the island as well as on the applied voltagesd  E. for Ny or N; electrons can be rewritten, to within a con-
Vgy. However, what matters for calculations of electronicstant, as

1. Electrostatic energy
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pied level. In the same way, electrons can tunnel out of the
island into leadk if the island is in a\;-electron state and
is below the energy of a nonempty state. The onset of the
current is associated with the first level available for tunnel-
ing, i.e. the lowest-energy nonfull level in thé,-electrons
ground state or the highest-energy nonempty level in the
FIG. 2. Energy diagrams for the single-electron transistor. They, -electrons ground state. As is ramped for a fixed value
island is represented by a set of discrete energy levels and the leags, , the Fermi energy in a lead can sweep past the energy
by continua of levels. Filled dots in the island stand for electronsrequ%red to initiate tunneling via an eigenstate, producing a
present in arNgy-electron ground state. The empty dot is an eXtrastepWise change in the current. The voltage position, width,

electron that tunnels onto the island to give Mj-electron state. . . -
The transition marked with a solid arrow is the one that determines‘r,jlnd current amplitude of this step are the quantities that we

the initial threshold for starting current flow. The transitions markedWIII analyze. It is .'mportam to note that as is mcreased’.

by dotted arrows then also contribute to the total curr@tWhen more tha.” one Sp'”'deger?e.r"?‘te quantum level can contribute
the Fermi energy of the right lead is swept past the first level avail-t0 tunneling eYe” at the ,'nmal onset of.current floyv. One
able for tunneling at energy,, current can tunnel through this example of th'_s case IS__IIIus_trated by Figlb2 The first-
level. (b) For a slightly lower gate voltage and higher bias V0|tage,allowed tunneling transition is for an electron to enter the

two levels contribute to tunneling even at the initial onset of currentle‘_/eI with energyey from th_e right_ electrode. However, after
flow. this electron has tunneled in to give a totaNyf electrons on

the island, transitions to the left electrode can occur either

from the state with energyy or from the lower-energy oc-
(6) cupied state depicted in Fig(l. If an electron tunnels out

of the lower-energy state, subsequent tunneling transitions
Notice that Eq.(5) explicitly includes the Coulomb energy from the right electrode can involve either quantum level.
that forbids states not havirg, or N, electrons, but this is Therefore, calculations of the current for this situation must

implicit in Eq. (6). The conditionN=N, or N; has, there- include tunneling processes occurring via both levels.

(@)
€ 777 "
LEdA W

E N e +NO+N1
c= C_2 Qo > €

fore, to be assumed explicitly when using E6). It is possible to have current flow at vanishihgif the
Fermi energy of both leads is aligned with the first level
2. Kinetic energy available for tunneling. The gate voltage that realizes this
The kinetic energy of the electrons in the island can beCondltlon is callectlegeneracy poinand is defined by
written as
VI (10
TR

Ex=2 €, Y]
' whereeg is the energy of this particular level.
where eiK is the energy, relative to the Fermi level, of spin-
degenerate single-electron quantum stasndn, is the oc- 3. Variations in electron-electron interactions

cupancy of this leve(either 0, 1, or 2 _ _ . Inthe presence of variations in electron-electron interac-
SinceN=2;n;, the sum of the electrostatic and kinetic {jons petween electrons in different energy levélthe en-
energies Is Just ergy of the island has the extra term

ECK=Ei &n;, ®) E;=J({n}). (11)

Equation(1) can be interpreted as an expansion of the energy
of the system around the ground state: the second term is the
No-+ Ny part of E that is linear in{n;}, the first term is the mean-field
€= eiK+ o Qo+ 5 ) (9 contribution of the quadratic part add{n;}) is defined to be

z the rest. The net effect of th&({n;}) term is to produce
Writing the effective energy of the single-electron states inshifts in the energy thresholds for tunneling that depend on
this way allows a simple accounting of the average Coulomphe actual state of the particle. For instance, the effective
energy in the calculations. energy level for adding an election to levélstarting with

In the absence of variations in electron-electron interacthe No-electron statgn;} is

tions between electrons in different energy levels, the energy
of the island is jusEk . With our conventions, the threshold € =+I{n;+ ;1) —I{n;}). (12
voltages required for the onset of a tunneling process can be
pictured with simple energy diagrams, as illustrated in Fig. 2Notice that this is only defined if;<2. In the same way, the
For example, al =0, electrons can tunnel from leddinto  energy of a nonempty energy level inNy state can be
the island if the island is &ly-electron state and Fermi en- defined asninusthe energy required to remove an electron
ergy EE of leadk is above the energy, of a nonfully occu-  from that level.

whereg; is defined by

e
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B. Steady-state occupation probabilities

Owing to the influence of the Coulomb charging energy,
even in the simplest cases that we will consider the occupa-
tion probability for a given many-body stdte)={n;} of the
particle cannotbe factorized as the product of occupancy
probabilities for each single-electron level. Therefore, we
have to solve the full rate-equation problem where the occu-
pation probability of each many-body state is treated as an
independent variable.

The evolution of the occupation probability of stade is
given by*°

FIG. 3. Energy diagram with one level available for tunneling.

through the left barrier. In the steady state these two currents

dp“—E(r Ps—T o sPo) (13
dt & U Aat T ampla)
wherel",, . 4 is the transition rate from state) to state|).
This can be written in matrix form as

are equal. The current through the left barriéris
h=lel2 2 T gPa (18)

WhereI"a%B is the contribution of the left lead tb', 4,

d_P:F.p (14  multiplied by +1 or —1 depending on whether the— 3
dt transition gives a positive or negative contribution to the
with the following coefficients for the matrik. current. . . .
In order to get a feeling of the physics that will come out
Tog=Tp .o if a#p (159 of thi's rate-equation model, in the rest o.f the paper we will
consider selected examples that are simple enough to be
solved by hand, yet have the basic ingredients of the com-
Toa=— 2 Tup (15  plete problem.

B+ a
We do not consider cotunneling or internal relaxation in ~ !Il- ONE SPIN-DEGENERATE LEVEL ACCESSIBLE
the particle. Therefore, the only states that are coupled to-
gether are states that have the same occupancy for all the ) L -
levels, except one electron difference in one level. Let us Consider the situation represented in Fig. 3 where only

assume that statés) and|g) differ only by |8) having one  ©N€ spin—degen.erate energy level, with ene¢gy is acces-
extra electron in level. Then sible for tunneling andon account of the large Coulomb

energy it can be occupied by either zero or one electron, but
not two?8 If we call

A. General formula

T p= (el —ED)(2—n)+ v/ f(ef —E7)(2— M),
(163

fr="f(es—Er) (199
Fpa=nl1=f(ef ~EDIn+¥[1- (e —ED)In i
(16b) f=f(e;—Ef) (19b)
where andN=0 or 1 the state wittN electrons, the transition rates
are
f(X)=1[1+expx/kgT)] a7
is the Fermi function corresponding to the temperature in the Foo1=2yf+2nf) (203
leads andy! and y! are the bare tunneling rates between B
leveli and each of the leads. Heeg is the energy needed to Io=7(1-f)+y(2-f) (20b)

add an electron to state) in leveli. It includes the contri-

bution of the interaction term. o for the tunneling-in and tunneling-out transitions. Then, the
The steady-state occupation probabilities can be found byccupation probabilities are

iterating Eq.(14) with a discrete timestegt to find the prob-

abilities for whichdP/dt=0. This is equivalent to finding the To 1 2y, f,+2yf,

eigenvectoiP, of I' associated with the eigenvalue zero. Pl:F T = YA+ f) T y(1+h) (219
0—1 1—0 r r | |

C. Current _Tio  _n@-fotu@a-fy

Once the occupation probabilities for each state are PO_FO%.‘_ Ti o v(1+f)+y(1+f) (21b)

determined at given values ¥fandVy, then the current can
be calculated either through the right tunnel barrier orand the current through the left lead in the steady state is
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2 vg=0 L S
vg=-3 ..............
1 F Vg=-6 -------------
)
S ol
-1 ______
20 -10 0 10 20

le[VikgT FIG. 5. Energy diagram with one level available for tunneling
and Vy<VZ. SinceEf is substantially belowe,, electrons can

FIG. 4. Current profiles as a function of the bias voltage for the lrmnel into the island only from the right lead.

case of a single spin-degenerate level accessible for tunneling, f<.1>
three different gate voltages. We assuBje-C, andy,=4v,. The
bias voltage is plotted in units ¢&6T/|e|. The current is in units of
lelvo, where yo=77/(%+v). The reduced gate voltage,
=]e|Cqy(Vg—VY)/CskgT is 0,—3 or —6.

In the limit of barriers with very different tunneling rates
(which can be experimentally relevant if the barrier thickness
is not well controlled, the current depends only on the
smallery. For example, ify;>1y,, thenl ,=2|e|y, andl _

I =|el[y(1—f)P1—29f,Pq] =—|e_| ¥ . The factor of 2 inl . /I _ arises from the differ-
ence in the number of spin states accessible for tunneling for
veyi(f,—1) the rate-limiting transition across the right barrier.

A+ ) F (15 1) 22

This expression differs from an approximate form used in
Ref. 13 to analyze tunneling data. Next we consider the case depicted in Fig. 5, in whigh

We can plot the current as a function of the applied volt-iS adjusted away from the degeneracy point so that at the
ages by replacing, by their definitions in Eqs(19) andE[, thresholdV for tunneling only the effective Fermi energy in
by the expressions in Eq$4). Figure 4 shows the current the right electrode is close i, while the Fermi energy of
steps as a function of the bias voltage when the gate voltagée left electrode is at a much lower energy. That is, we will

is first equal to the degeneracy point, then is tuned awagssumef;=0. Using this assumption, after some algebra Eq.
from it. (22) becomes

=2]¢]

C. Position and width of the current step

2yt
Vet

B. High bias limit I=1_.f| e,—EF—kgTIn (25

If the level spacing is very large comparedkgTl, there
is an interesting regime in whick is substantially bigger Even though both spin states of the quantum level contribute
than kgT/|€| yet only one level is involved in the current to tunneling, we can see in this expression that the current
transport. The limiting current in this case is bias indepenstep has the shape of a simple Fermi function whose width is
dent and can be obtained from Eg2) by settingf,=1 and  given by the electron temperature of the leads. However, at a
f,=0 (positive biag or f,=1 andf,=0 (negative bias For = nonzero temperature, the center of the step is shifted relative
these two cases we have, respectivély, to its position at zero temperature. The shift is proportional
to the temperature, vanishes)if>>y,, and has a maximum

|, =2le| Yr Y (239 value ofkgT In 2 wheny,> v, . Figure 6 shows the shape of
- 2yt the conductance peak/dV in the latter limit for three dif-
ferent temperatures.
VeV There is a simple intuitive explanation of the shift in the
| _=—2¢| 2y (23D jimit y,>7,. The current threshold at zero temperature is

given by EF=¢;. At nonzero temperatures, whéij = ¢,
These expressions give different heights for the positiveéhe Fermi occupancy probability @& for states in the right

and negative current steps. Measuring these heights calead with the energy; . In this case the transition rates are

therefore, allow an experimental determination of beth  dominated by electrons tunneling back and forth from the

and y,. Note that this is in contrast with the case in whichright lead(sincey,> )

tunneling occurs through a single level that is not spin de-

generate. In that case To1=3(2y) (269
Iy =+]e| ’)/;_’y| (24) 1-0=27r (26D
VTN Here the factor; comes from the Fermi occupancy of the
for both bias direction$? so thaty, and y, cannot be deter- lead and the factor 2 i, ,, is from the spin degeneracy.
mined separately. This factor is only present fol'y_,; because electrons tun-
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0.08 r

0.06 |

0.04

(kaT/ve?) di/dV
B

002

lel(V - Vo)kgT

FIG. 7. Splitting of a conductance peak in a magnetic field. We
assumef;" =0, C,=C,, and y,=y,=v. At zero temperature and
zero field the peak occurs M)ZZCg(Vg—Vg)/CE. The reduced
field h=guguoH/(2kgT) is O, 3, or 6.

FIG. 6. (@ Current step andb) conductance peak at positive ductance peak at positive bias for a gate voltage below the
bias and negative gate voltage for three different temperatures. V\Gegeneracy pointi.e., the caséf =0). The peak splits into
assumeC, =Cy, =50 MHz Ref. 12 andy,>y,. The peak occurs g suppeaks of different weight. This asymmetry can be
at Vo=2C,(Vy—Vg)/Cy at zero temperature and shifts from this \nqerstood by noticing that the first subpeak carries a current
position by an amountkzT In 2/|e| at nonzero temperature. given by Eq.(24) and the two peaks together give a total

o . . current given by Eq(23). Then the fraction of the total cur-
neling into the island see two empty states, while an electropent carried by the first subpeak is just

tunneling out comes from a given spin state. It follows that
when Efze1 the probability that the island is in the one- 17 29+

electron state is exactly two-thirds. Then the rate at which =20 12 (30
electrons tunnel to the left leathe rate-limiting process * LA

determining the total currents two-thirds of the maximum If y,>,, this ratio is one and the second peak vanisfies.
value. This can be seen directly in Fig¢a or in 6b) by  On the other hand, ify>v,, the peak splits into two sub-
the fact that two-thirds of the currefdrea under the peaks peaks carrying the same current.

lies left of V—V=0. ThisT-dependent shift in the apparent

resonance position has been observed by Deshpetralé® IV. TWO LEVELS ACCESSIBLE

D. Zeeman splitting of the energy level _Next consider the situation pictu.red in Fig. 8 vyhere two
] o _spin-degenerate levels are accessible for tunneling and the
In the presence of an applied magnetic field, the two spithymper of electrons in these levelsNs=2 or 3. Due to the

states associated with a given orbital level are no longer decoulomb blockade, no current flow is possible until an elec-
generate, but split to give the energieg; =€ tron can tunnel from the right electrode to state 2; however,
*gupmoH/2. If we call these states- and —, and f,,  after this happens both states 1 and 2 can contribute to the

=f(e; —E}), then the transition rates are current even at the initial current onset. Let; (n,) be the
. . state withn, electrons in level 1 and, electrons in level 2
Poo=wfr+nfl (278 (n,+n,=N), let P(n;,n,) be the probability of state
. . (n1,ny), and lety¥ be the bare tunneling rate of the level
o=y (=) +n(1-1) (27H  across the barriek. We will specialize immediately to the
Notice the absence of the factors 2 that were in E20. due
to the spin degeneracy. The occupation probabilities are 'Y} 'Yf

1
P: 28 H T Sy
o To. To (283 =0 A . )"E.\(

P
1+F+—>0 F——»O U\\ .
p._1o:p (28b) 1=1A7 A s
* Ftﬂo 0 - — @ —@—

and the current through the left lead is

I=[eln[(1—f )P+ (1—f)P_—(f + 1 )Po].

(29 FIG. 8. Energy diagram for a case with two levels available for
Figure 7 shows the effect of the magnetic field on the contunneling.
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':‘ 2f72 '::1 271 '::1 f72 '::‘
¥7 2

(2,0) ’Yz+(1 7 2‘/2+2(1 7% 1,2)

TJ;N

corresponding transition rates. Singp< y! fori=1,2, the
terms having a factor £ f can be neglected.

Y

=3

A. Rate equation

The rate equation in this case has to describe eight pos-
. . - . . — . sible transitions between five different states. It is, therefore,
interesting case of positive bidas pictured in Fig. Bwith convenient to use the matrix notation of E@4), which
the right barrier substantially thicker than the left barrier, SOgives
'y,>'yJ for i, j e{1,2. (Note that this is opposite to the in-

FIG. 9. Available transitions for the situation described in Fig. 8.

equality considered in Fig. 6To simplify further, we will P(2,0) P(2,0)
also look only at the current onset at positive bias for a large P(1,2) P(1,1)
negative gate voltage, i.e., we will assuniéel—Ef) ﬂ P(0,2 | =r| P(0,2 (313
=f(e,—E[)=0 and f(e;—E[)=1. For this casef(e, dt P(2,1) P(2,1)
—EF) will simply be calledf. These conditions correspond ’ ’
r P(1,2) P(1,2)

to line 11l in the data of Ref. 12.
Figure 9 shows the available transitions together with thewith

217 0 0 Yo+ (1—f), 0
0  —vi—f¥, 0 29} 29, +2(1-1)9,
r=( o 0 —29] 0 7l : (31b
219 7 0 |=%h—(1-F)r—2} 0
0 I 2] 0 —295=2(1=f) s~

This matrix has the structure

l_‘UIJ l_‘UC)
F=( (32)
1-‘CIJ 1-‘CC

!
o] =2 7P+ (15 + Y)P(LD+271P(02
(4y2K+2y1 KA 2+ (29, + 49D 1

1+4fK+f2K? (39

I=|e]
whereT',, andT'.. are diagonal blocks associated, respec-

tively, with the No-electron (uncharged and N;-electron  |n Fig. 10 we compare this expression to the current we
(charged states. The cross-diagonal blocks are associate@ould have in the presence of infinitely fast relaxation in the
with the tunneling-out ;) and tunneling-in [';,) events. island[state(1, 1) relaxing instantaneously 1@, 0)]. In such
This structure is preserved whatever number of levels arg case electrons can only tunnel into the higher energy level

available for tunneling. in the island. Since the tunneling in of electrons is the rate-
In the steady state, the solutions for the occupation prob-
abilities are as follows: 2 . . =
P(2,1)<1, P(1,2<1, (339 15T
=
P20—1 Pll—4fK P02—f2K2 = i
(20=g PLD=7g POI=75~ os | _
(33b equilibrium ——
0 e . _non equilibrium -
whereK = v} y5/ vy} andS=1+4fK+ f2K?, -10 5 0 5 10
lel(V - Vo)kgT
B. Current

FIG. 10. Shift of the current step by nonequilibrium in the two-
Since we can neglect the tunneling-out transitions througlevels-accessible case. We assumie= y,=7v and y,=y5,=17,,
the right barrier, we can calculate the current as the sum ofith 5>y, . The step occurs aty=2C4(Vy—VJ)/Cs at zero tem-

the contributions of the tunneling-in events through this barperature. The “equilibrium” curve assumes infinitely fast relaxation
rier in the island. The “nonequilibrium” curve assumes no relaxation.
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2 =0 position in they,>vy, case will be enhanced beyond
15 what is shown in Fig. 11. This shift will, however, remain
o proportional tokgT.
o 1 We have also considered the case wEénis very high,
Y so that many levels are accessible for an electron to tunnel
g into the island across the higher-resistance tunnel barrier,
0 while E|F remains fixed slightly below, . In such a situation
~~ 200 the total tunneling-in transition rate will be proportional to
8 the number of levels available for tunneling in, and this rate
> 100 can eventually become greater than the tunneling-out rate,
% which will be roughly constant. In this case, tunneling

through the left lead will eventually become the bottleneck
process even ify;>vy,, which allows one to estimate an
average tunneling rate through the lower-resistance barrier
even in the case of very asymmetric barriers.

-200 -100 0 100 200

FIG. 11. Dependence @#) the current step ang) the conduc-
tance peak on the temperature in the two-levels-accessible case in V. TWO LEVELS ACCESSIBLE WITH VARIATIONS

the presence of nonequilibrium. We assumlg=y,=17, and v} IN THE INTERACTIONS

=95=17,, with >y, and no relaxation in the island. . . .
In the presence of variations in electron-electron interac-

limiting process, this situation is equivalent to the case of Eq'_uons, the energy thresholds for tunneling are different de-

(22) when only one level is accessible for tunneling, and théaending on whether the island is if““a”y in a grounql state or
current would just be In an excited state. For example, in the case described in the

preceding section, this effect can make the energy required
(35) for the (1,1)—(1,2) transition different than the (2,0)
—(2,1) transition. We can account for such variations by
The main effect of nonequilibrium states as illustrated in Fig.assigning a different energy to the upper level in the presence
10 is, therefore, to shift the current step to a lower voltageor absence of an excitation in the island. Namely, the energy
Although not exactly a Fermi function, the shape of the stepf the upper level will bee, for the (2,0)—(2,1) transition
described by Eq(34) is very close to a Fermi function, ande;=e,+ 6 for the (1,1)~(1,2) transition. HereS is a
shifted by—1.7%gT and widened by 8.5%. The shift can be measure of the strength of the variations. In order to gener-
understood as follows: WhEEl'r:=62, electrons tunneling to alize the previous notation, we will caﬂ=f(ez—E,F) and
the upper level come from half-full states in the right lead. If ' =’ (e,— E).
the island is in a nonequilibrium stafél, 1) or (0, 2], elec- The possible transitions are still described by Fig. 9 and
trons can also tunnel to the lower level. Since these electrongie corresponding rate equations are the same as(&bs.
come from full states in the lead, the currentBgt=¢, is  but with
higher when these states are allowed, hence the shift.

I equilibrium™ 2|e| ’}’rzf(fz— E'r:)

The temperature dependence of the current step and the F<1,1>H<1,2)=f'7r2 (373
conductance peak in this two-level-accessible case wjth
>, is displayed in Fig. 11. Although th&dependent shift Tpon=2%+2(1—f") 7y}, (37b

looks very similar to the result for one level displayed in Fig.

6, the shift in Fig. 11 is of a different nature since it origi- Which gives the current

nates from nonequilibrium states. For the one-level- . e . .
accessible case, there was no shift for positive bias wjth el (4y K+2y KO+ (29, +4y))f
>, . If we look at the opposite limit with two levelgosi- 1+4FfK+ff K2 '
tive bias y,<7y,), the rate equation will be dominated by

electrons tunneling back and forth between the right lead anfiigure 12a) shows the current step for the case that the
the second level in the island. This situation is very similar to€Nergy required for the tunneling transition is decreased by

(39

the one-level case and gives the current nonequilibrium (negative §) for various values ofs/kgT
ranging from 0 to—20, and Fig. 1&) showsl|-V curves
I=|e|(2y}+ 7, f(e,— EF —kgTIn2), (36)  when the nonequilibrium effect increases the tunneling en-

ergy. These plots were made fok=vy5=1v,, »>1v,, and

where the shift bykgT In2 is explained by the same argu- K=1. For negatives, the effect of the variation in electron-
ment as in the one-level case. The additional level, thereforaslectron interactions is to produce an additional shift in the
does not produce an additional shift whep<y, . voltage position of the current step, on top of the shift al-

If the voltages are tuned so that more than two levels areeady described due to the nonequilibrium states. This addi-
made available for tunneling-out transitioisy lowering  tional shift is proportional td4| if |5|<kgT and becomes a
E|F), or if the tunnel couplings to state 1 are greater than taonstant of the order d€gT if |5|>kgT. A shift of this sort
state 2, then the shifting of the resonance away fromTthe has been observed in Fig(l33 of Ref. 12. For positives, the
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2 ot VI. CONCLUSIONS

1.5 We have solved the rate equations describing electron tun-

= 1 equilibrium neling via discrete quantum states on a nanoscale island, for

— 0 selected simple cases, under the assumption that rate for in-
0.5 '°;§ _________ 8 ternal relaxation of excited electronic states is slower than
20 e the electron tunneling rate. Even the simplest case of tunnel-

0_1 5 0 5 10 ing via a single spin-degenerate energy level has some ini-

tially surprising features. The magnitude of the maximum
tunneling current can depend on the sign of the applied bias
V, and the voltage position of the resonance is temperature
dependent. When two spin-degenerate quantum levels are
accessible for tunneling, the behavior is even richer because
of the influence of nonequilibrium excitations on the island.
The voltage position of the resonance can undergo strong
temperature-dependent shifts even in regirteeg., positive
bias andy,> vy, noted abovewhere the one-level resonance
positions do not depend on the temperature. Understanding
the variations in the strength of electron-electron interactions
is critical in the nonequilibrium regime with two or more
levels accessible. Such variations can produce additional
shifts of resonance curves on top of the shifts noted previ-
ously, and they can also introduce extra steps into the
current-voltage curves.

The methods we have described for determining tunneling
currents are applicable to more than two levels, but the ana-
lytic expressions become sufficiently complicated to be of
limited usefulness. We have verified numerically that the re-
As V is increased so that more than two levels becom sults for additional levels are qualitatively similar to the two-

. . . fevel case. The computer codes we have used for calculating
energetically accessible for tunneling, the ensemble of POSte general cases are available electroniddiijhese are
sible nonequilibrium excitations grows combinatorically, and seful, for instance, in extracting the rate-limiting bare tun-
each combingtion of excitations can produce a different shi Iing’ rates from éxperimental data in which stepwise in-
for the tunneling resonance energies. Interactions that depeQ: eases in the current are measuretf amdV are adjusted,

o e spn s of o g s a1 S e ko
P ' q creases one by orté.

can produce a variety of effects depending on the rgtioy,
and on the magnitude of variations in electron-electron inter-
actions. When the interaction-induced shifts are comparable
to kgT, they have been observed to produce an effective We thank Piet Brouwer, Abhay Pasupathy, Moshe
broadening of the observed conductance péakar larger ~ Schechter, Jan von Delft, and Xavier Waintal for discussions.
interactions, shifts due to nonequilibrium excitations haveThis work was supported by the N§SBPMR-0071632} and
been resolved individualf*® the Packard Foundation.

lel(V - Vo)kgT

FIG. 12. Current steps for different interaction strengths. We
assumeC,=C,, y|1= )/'2: v, andy;=y,=7,, with y,>v,. The
“equilibrium” curve assumes infinitely fast relaxation in the island.
The other curves assume no relaxation @tk T ranging(a) from
0 to —20 and(b) O to 6.

effect of nonequilibrium is to produce an extra step in the,
[-V curve at voltages larger than the position of e 0
current step.
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